4541/1 (PP) Kimia Kertas 1 Peraturan Pemarkahan Oktober 2022

MAKTAB RENDAH SAINS MARA

PEPERIKSAAN AKHIR SIJIL PENDIDIKAN MRSM 2022

KIMIA

Kertas 1

Peraturan Pemarkahan

Untuk kegunaan pemeriksa sahaja

Table of Specification SPMRSM 2022

No.	Construct	Topic	Type Of Item	Key
1	Remembering	F 4 LA2	M. Choice	A
2	Remembering	F 4 LA3	M. Choice	В
3	Remembering	F 4 LA4	M. Choice	A
4	Remembering	F 4 LA6	M. Choice	A
5	Remembering	F 4 LA5	M. Choice	A
6	Remembering	F 4 LA7	M. Choice	В
7	Remembering	F 4 LA8	M. Choice	С
8	Remembering	F 5 LA9	M. Choice	D
9	Remembering	F 5 LA10	M. Choice	A
10	Remembering	F 5 LA9	M. Choice	В
11	Remembering	F 5 LA10	M. Choice	С
12	Remembering	F 5 LA11	M. Choice	D
13	Remembering	F 5 LA12	M. Choice	С
14	Remembering	F 5 LA13	M. Completion	A
15	Understanding	F 4 LA2	M. Choice	В
16	Understanding	F 4 LA2	M. Choice	С
17	Understanding	F 4 LA3	M. Choice	D
18	Understanding	F 4 LA4	M. Choice	C
19	Understanding	F 4 LA4	M. Choice	C
20	Understanding	F 4 LA5	M. Choice	В
21	Understanding	F 4 LA6	M. Choice	В
22	Understanding	F 4 LA7	M. Choice	D
23	Understanding	F 4 LA7	M. Choice	A
24	Understanding	F 5 LA14	M. Choice	D
25	Understanding	F 5 LA9	M. Choice	В
26	Understanding	F 5 LA10	M. Choice	D
27	Understanding	F 5 LA11	M. Completion	C
28	Understanding	F 5 LA12	M. Completion	D
29	Understanding	F 5 LA14	M. Choice	D
30	Applying	F 4 LA3	M. Choice	D
31	Applying	F 4 LA5	M. Choice	C
32	Applying	F 4 LA6	M. Choice	D
33	Applying	F 4 LA7	M. Choice	В
34	Applying	F 5 LA9	M. Choice	D
35	Applying	F5 LA9	M. Choice	D
36	Applying	F 5 LA11	M. Choice	A
37	Applying	F 5 LA10	M. Completion	В
38	Applying	F 4 LA6	M. Choice	В
39	Analyzing	F 5 LA9	M. Choice	A
40	Analyzing	F 5 LA 9	M. Choice	A D

Key	No.
A	9
В	10
C	8
D	13
Total	40

Element	Code
Remembering	PK01
Understanding	KK01
Applying	KK02
Analyzing	KK03
Evaluating	KK04
Creating	KK05

END OF MARK SCHEME

4541/2 (PP) Kimia Kertas 2 November 2022

MAKTAB RENDAH SAINS MARA

PEPERIKSAAN AKHIR SIJIL PENDIDIKAN MRSM 2022

KIMIA

Kertas 2

Peraturan Pemarkahan

Untuk Kegunaan Pemeriksa Sahaja

MARKING GUIDELINES

PAPER 2

Symbol		Meaning
//	-	replace the whole sentence
/	2 4 0	replace the previous word
[]	4 <u>-14</u> 6	can be summarized from explanation
or b	old -	key word
adp	<u>144</u> 0	avoid double penalty
wcr	=	wrong cancel right
a	-	accept
r	-	reject
ecf	-	error carry forward

SECTION A

ľ	No.	Mark Scheme	Sub Mark	Total Mark
1	(a)	[Able to state the physical state of fats at room temperature correctly]		
		Answer: Solid	1	1
((b)	[Able to name the reaction for the conversion of saturated fats into unsaturated fats correctly]		
		Answer: Hydrogenation // Addition of hydrogen	1	1
((c)	[Able to state the type of food additives and function of citric acid in the cake correctly])
		P1. Type of food additives P2. Function of citric acid	1	
		Answer:	1	2
		P1. Antioxidants		
		P2. Slow down the oxidation of fats in food // Prevent oily or greasy food from becoming rancid.		
(0	d)	[Able to state one other example of food additives in the cake correctly]		
		Sample answer:		
		Preservatives // flavourings // stabilisers // emulsifiers// dyes	1	1
			Total	5

No.		Mark Scheme	Sub Mark	Total Mark
2 (a)	(i)	[Able to state the meaning of molecular formula correctly] Answer:	4	
		Chemical formula that shows the actual number of atoms of each element in a molecule/compound	1	1
	(ii)	[Able to write the molecular formula of aspirin correctly] Answer: C ₉ H ₈ O ₄	1	1
	(iii)	[Able to state the type of particle of aspirin correctly] Answer: Molecule	1	1
(b)		[Able to give two information that can be interpreted from the chemical equation correctly]		
		P1. Identify <u>reactants and product</u> P2. Mole ratio//quantity ratio of reactant and product Sample answer:	1	2
		4 mol of aluminium reacts with 3 mol of oxygen to produce 2 mol of aluminium oxide //		
		4 aluminium <u>atoms</u> react with 3 oxygen <u>molecules</u> to produce 2 <u>units</u> of aluminium oxide		
	L.		Total	5

No.	Mark Scheme	Sub Mark	Total Mark
3 (a)	[Able to state the meaning of isotopes correctly] Sample answer:		-
	Atoms of the same element with the same proton number but different nucleon number // Atoms of the same element with the same number of protons but different number of neutrons	1	1
(b)	[Able to draw the atomic structure of Si-28 correctly]		
	P1. Nucleus is shown and correct number of shell P2. Correct number of electron and label proton and neutron in the nucleus	1	2
	X X X X X X X X X X X X X X X X X X X		
(c)	[Able to calculate the relative atomic mass of Si correctly]		
	P1. Calculation P2. Correct answer	1	2
	Sample answer:	1	. 2
	RAM of Si = $\frac{[92 \times 28] + [5 \times 29] + [3 \times 30]}{100}$ $= 28$		
(d)	[Able to state one example of isotopes used in medicine field correctly]		
	Sample answer:		
	Cobalt-60 // Iodine-131	1	1
	*Accept any suitable isotopes		•
		Total	6

No.	(Mark Scheme	Sub Mark	Total Mark
4 (a)		[Able to write the electron arrangement of ion T correctly]	(36)	4
		Answer: 2.8.8	1	1
(b)		[Able to state the position of element S in the Periodic Table of Elements correctly]		
		Answer: Period 2, Group 16	1	1
(c)		[Able to arrange the atomic size of the elements in descending order correctly]		
		Answer : Q,T,U,P,R,S	1	1
(d)	(i)	[Able to state the element that exists as monoatomic gas correctly]		
		Answer: U	1	1
	(ii)	[Able to explain answer in d(i) correctly]		
		Sample answer:		
		Atom has achieved stable octet electron arrangement	1	1
(e)		[Able to explain the difference in reactivity between the two elements correctly]		
		Sample answer:		
		P1. Size of Q atom is bigger than P atom// [Atomic size] P2. Attraction forces between nucleus and the valence electron in Q atom is weaker than P atom //	1	
		Q atom is easier to lose electron than P atom	1	2
			Total	7

N	0.		Mark Scheme	Sub Mark	Tota Mari
5 (a	a)		[Able to state the meaning of the polymer correctly] Answer: A long chain molecule that is made from a combination of many repeating basic units/monomers.	1	1
(b))	(i)	[Able to draw the structural formula of the monomer correctly] Answer: H CH ₃	1	1
		(ii)	[Able to state the type of polymerisation reaction in the production of the polymer correctly]		
	((iii)	Answer : Addition polymerisation [Able to state one of the uses of the polymer correctly]	1	1
			Sample answer: Food container // Plastic bottles // Ropes // Twine *Accept any suitable answer	1	1
(c	:)	(i)	[Able to choose and justify the use of natural rubber or synthetic rubber in the making of this sport shoe sole correctly] P1. Choose the type of rubber P2 & P3. Justification	1 1+1	3
			Sample answer: P1. Natural rubber P2. Soft (which makes foot is more comfortable) P3. Low heat resistance (This will make the sole become sticky and less slippery. This makes the sole can grip the flooring better.)		
			OR P1. Synthetic rubber P2. More elastic. (It can retain its shape longer. The shoe can be wear longer) P3. More/High heat resistant.(The shoe sole is not easily worn)		
	([Able to suggest one way to overcome the issue correctly]		
			Sample answer: Recycle // Reuse // Reduce	1	1

[Lihat halaman sebelah

	No.		Mark Scheme	Sub Mark	Tota Mar
6	(a)	(i)	[Able to write the electron arrangement of atom X correctly] Answer:	1	1
		(ii)	[Able to state the type of forces of attraction correctly] Answer:		
			Electrostatic attraction forces // Electrostatic forces of attraction	1	1
		(iii)	[Able to write the chemical equation for the formation of the compound correctly]		
	¥		P1. Correct formula of reactant and product P2. Balanced chemical equation	1	2
			Answer: $2X + Y_2 \rightarrow 2XY // 2Mg + O_2 \rightarrow 2MgO$		
		(iv)	[Able to calculate the mass of XY produced when 0.1 mol of X react with Y in excess correctly]		
			P1. Mole ratio P2. Mass of XY with correct unit	1 1	2
			Sample answer: P1. 2 mol X produce 2 mol XY // 0.1 mol X produce 0.1 mol XY		
			P2. Mass of XY = $0.1 \times (24+16) = 4 \text{ g}$		
			Note: Apply ecf P1 from 6(a)(iii)		
	(b)		[Able to identify the type of compound and explain the two properties of white solid correctly]		
			P1. Covalent compound// Covalent r: covalent bond P2. Consists of neutral molecule //	1	
			no free moving ion present P3. Weak attraction forces between molecules//	1	
			Weak intermolecular forces of attraction// Weak Van der Waals force between molecules	1	3
				Total	9

No.			Mark Scheme	Sub Mark	Tota Mark
7	(a)	(i)	[Able to state the meaning of heat of precipitation correctly]		1.1411
			Answer:		
			Heat change when 1 mole of precipitate is formed from their ions in aqueous solutions. a: specific definition	1	1
		(ii)	[Able to state one information that can be obtained from the energy level diagram correctly]		
			Sample answer:		
			Precipitation of barium sulphate is an exothermic reaction // 1473.2 kJ heat is released when 1 mol of barium sulphate is formed // Total energy content of reactants is higher than total	1	1
			energy content of products		
		(iii)	[Able to name solution X correctly]		
			Answer:		
			Barium chloride // Barium nitrate r: Formula	1	1
		(iv)	[Able to write ionic equation correctly]		
			Answer:		
			$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$	1	1
	(b)	(i)	[Able to calculate the increase in temperature with unit correctly]		
			P1. Number of mole of Pb(NO ₃) ₂ /Na ₂ SO ₄		
			P2. Heat released, Q P3. Temperature change, θ with unit	1 1	
			Answer:	1	3
			P1. Number of mole of Pb(NO ₃) ₂ = MV /1000		
			$= 1 \times 25 / 1000$		
			= 0.025 mol // Number of mole of Na ₂ SO ₄ = 1 x 25 /1000 = 0.025 mol		
			P2. 1 mol of PbSO ₄ released 50.4 kJ 0.025 mol of PbSO ₄ released 1.26 kJ //		
			$Q = \Delta H (n) = 50400 (0.025) = 1260 J$		

No.	Mark Scheme	Sub Mark	Total Mark
	P3. $\theta = Q / mc = \frac{1260}{(25+25)(4.2)}$ = 6 °C		
(ii)	[Able to suggest how to obtain the result correctly] Answer: Use 0.5 mol dm ⁻³ lead(II) nitrate solution and 0.5 mol dm ⁻³ sodium sulphate solution	1	1
(c)	[Able to choose the best fuel for cooking and justify your choice correctly] P1. Fuel chosen P2. Justification Sample answer: P1. Methane P2. Cheaper OR P1. Octane P2. The fuel value is higher // Easier to handle // Safer	1 1	2
	y.	Total	10

	No.		Mark Scheme	Sub Mark	Total Mark
8	(a)	(i)	[Able to state all anions present in NaCl solution correctly]		
			Sample answer:	1	1
			Chloride and hydroxide ions // Cl- & OH-		
		(ii)	[Able to name the product formed at electrode P correctly]		
			Answer:		
			Chlorine r: formula	1	1
		(iii)	[Able to explain the selection of ions to be discharged at electrode P correctly]		
			Answer:	1	1
			Concentration of chloride ions/Cl ⁻ is higher than hydroxide ions/OH ⁻	1	1
		(iv)	[Able to describe a chemical test to verify the product formed at electrode P]		
			P1. Method and reagent P2. Observation	1	2
			Sample answer:		
			P1. Place a damp blue litmus paper into a test tube containing the product formed		
			P2. Blue litmus paper turns to red and then bleached		
	(b)		[Able to write the half equation correctly]		
			Answer:		
			$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$	1	1
	(c)	(i)	[Able to compare and explain the difference in the observations correctly]		
			Sample answer:		
			P1. Inference based on observation in Test tube I and II P2. Reason for observation in Test tube I P3. Reason for observation in Test tube II	1 1 1	3
			P1. Test tube I: Lead metal formed Test tube II: No reaction occurs		
			P2. Test tube I : Lead(II) ion receives/gains electron to form lead atom // Lead is displaced from lead(II) nitrate solution by iron //		

No.	Mark Scheme	Sub Mark	Total Mark
	Iron is more electropositive than lead // E ⁰ value of iron is more negative than E ⁰ value of lead		
	P3. Test tube II : Copper cannot displace lead from lead(II) nitrate solution// Copper less electropositive than lead // E ⁰ value of copper is more positive than E ⁰ value of lead		
(ii)	[Able to suggest an action to be taken to ensure reaction occurs in test tube II correctly] Sample answer: Change copper wire with a more electropositive metal // Change copper wire with a metal with more negative E ⁰ value. // Change lead(II) nitrate solution with silver nitrate solution	1	1
		Total	10

SECTION B

No.		Mark Scheme Sub Mark		Total Mark
(a)	(i)	[Able to choose and explain the method to relieve the stomach pain faster]		
		P1. Method	1	
		SA PERSONAL PROPERTY OF SALES AND SA	1+1	3
		The state of the s		
		P1. Chew the antacid tablet P2. Chewing will break the tablet into smaller size P3. Larger total surface area of tablet exposed / react with acid		
		[Able to calculate the average rate of reaction for Set I and Set II with unit correctly]		
	(ii)	Answer:		
		P1. Set I: $48.00/2 = 24 \text{ cm}^3 \text{ min}^{-1}$	1	
		DOLYMAND GOOD TO STAND THE	1	2
		calculate the mass of calcium carbonate correctly] P1. Correct formulae of reactants and products P2. Balanced equation P3. Number of mole of CO ₂ P4. Mole ratio P5. Mass calcium carbonate with correct unit	1 1 1 1	5
		Answer:		
		P1&P2. $2HCl + CaCO_3 \longrightarrow CaCl_2 + CO_2 + H_2O$		
		Sample answer: P3. Number of mole carbon dioxide; n = Volume /molar volume = 72 /24000 = 0.003 mol		
		P4. 1 mol of CO ₂ produced by 1 mol of CaCO ₃ 0.003 mol of CO ₂ produced by 0.003 mol CaCO ₃		
		Note: Apply ecf P4 from P1 & P2		
		P5. Mass of $CaCO_3 = 0.003 \times molar mass$ = 0.003 x 80 = 0.24g		
	T	(a) (i)	(a) (i) [Able to choose and explain the method to relieve the stomach pain faster] P1. Method P2. & P3. Explanation Sample answer: P1. Chew the antacid tablet P2. Chewing will break the tablet into smaller size P3. Larger total surface area of tablet exposed / react with acid [Able to calculate the average rate of reaction for Set I and Set II with unit correctly] (ii) Answer: P1. Set I: 48.00/2 = 24 cm³ min⁻¹ P2. Set II: 72.00/4 = 18 cm³ min⁻¹ P3. Set II: 72.00/4 = 18 cm³ min⁻¹ P4. Correct formulae of reactants and products P5. Balanced equation P6. Number of mole of CO2 P6. Mole ratio P7. Mole ratio P7. Mass calcium carbonate with correct unit P7. Number of mole carbon dioxide; P7. P1. P1. P1. P1. P1. P1. P2. P1. P1. P2. P1. P1. P2. P1. P1. P2. P3. Number of mole carbon dioxide; P7. Number of mole carbon dioxide; P7. Number of mole carbon dioxide; P7. Volume /molar volume	(a) (i) [Able to choose and explain the method to relieve the stomach pain faster] P1. Method P2. & P3. Explanation Sample answer: P1. Chew the antacid tablet P2. Chewing will break the tablet into smaller size P3. Larger total surface area of tablet exposed / react with acid [Able to calculate the average rate of reaction for Set I and Set II with unit correctly] (ii) Answer: P1. Set I: 48.00/2 = 24 cm³ min⁻¹ P2. Set II: 72.00/4 = 18 cm³ min⁻¹ P2. Set II: 72.00/4 = 18 cm³ min⁻¹ P3. Number of mole of color calculate the mass of calcium carbonate correctly] P1. Correct formulae of reactants and products P2. Balanced equation P3. Number of mole of CO₂ P4. Mole ratio P5. Mass calcium carbonate with correct unit Answer: P1&P2. 2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O Sample answer: P3. Number of mole carbon dioxide; n = Volume /molar volume = 72 /24000 = 0.003 mol P4. 1 mol of CO₂ produced by 1 mol of CaCO₃ 0.003 mol of CO₂ produced by 0.003 mol CaCO₃ Note: Apply ecf P4 from P1 & P2 P5. Mass of CaCO₃ = 0.003 x molar mass = 0.003 x 80

No.	Mark Scheme	Sub Mark	To Ma
(b)	[Able to suggest the change that can be done to Set I and explain the changes based on collision theory correctly]		
	P1. Changes to obtain Set II P2-P5. Explanation using collision theory P6. Changes to obtain Set III P7-P10. Explanation using collision theory Sample answer:		
	To obtain Set II		
	P1. Use zinc granules // Use bigger size of zinc	1	
	Explanation:		
¥:	P2. Zinc granules have smaller total surface area exposed to collision	1	
	P3. Frequency of collision between H ⁺ ions and Zn atoms is lower P4. Frequency of effective collision between H ⁺ ions and	1	
	Zn atoms is lower	1	
	P5. Rate of reaction will be lower	1	
	To obtain Set III		
	P6. Add copper(II) sulphate (solution)	1	
	Explanation:		
	P7. The presence of copper(II) sulphate as catalyst provide alternative pathway with lower activation energy	1	
	P8. More colliding particles able to achieve the lower		
	activation energy	1	
	P9. Frequency of effective collision between H ⁺ ions and Zn atoms is higher	1	
	P10. Rate of reaction will be higher	1 1	1
	*Note: -reject decreases for P3, P4 and P5 -reject increases for P9 and P10		
		Total	2

1	No.		Mark Scheme	Sub Mark	Total Mark
10	(a)	(i)	[Able to state the method and physical properties involved in the separation process of crude oil correctly] Answer		.,,
			P1. Fractional distillation	545	
			P2. Boiling point	1 1	2
		(ii)	[Able to draw the structural formulae for both distillates correctly]		
			P1. Structural formula of 2,2,4-trimethylpentane P2. Structural formula of butane	1	2
			Answer		
			CH ₃ CH ₃ CH ₃		
			H H H H I I I I H—C—C—C—H I I I H H H H		9
	(b)		[Able to write the chemical equation for the combustion of hexane and calculate volume of carbon dioxide gas correctly]		
		El-A	P1. Correct formulae of reactants and products P2. Balanced equation P3. No. of mole of hexane P4. Mole ratio P5.Volume of carbon dioxide gas with correct unit		
			Sample answer:		
			P1&P2. $C_6H_{14} + 19/2 O_2 \rightarrow 6CO_2 + 7H_2O$	1+1	
			P3. No of mole $C_6H_{14} = 258 / (12(6)+14(1)) = 3 \text{ mol}$	1	
			P4. 1 mol C ₆ H ₁₄ produce 6 mol CO ₂ 3 mol C ₆ H ₁₄ produce 18 mol CO ₂	1	
			Note: Apply ecf P4 from P1 & P2		
			P5. Volume of CO_2 gas = 18 x 24 = 432 dm ³	1	5

[Lihat halaman sebelah

No.		Mark Scheme	Sub Mark	Tota Marl
(c)	(i)	[Able to suggest the name of alcohol P, write the molecular formula of compound Q, state the homologous series of compound R and name of Reaction III correctly] Answer:		8
		P1. Ethanol // propanol P2. C ₂ H ₄ // C ₃ H ₆ P3. Alkane P4. Oxidation	1 1 1 1	4
	(ii)	[Able to compare the sootiness of the flame correctly] P1. Calculate % of C by mass in compound Q P2. Calculate % of C by mass in compound R P3. Compare the % of C by mass between both compounds P4. Compare the sootiness of the flame		
		Sample answer: P1. % of C by mass in compound Q / C ₂ H ₄ $= \underbrace{(12x2)}_{(2(12) + 4(1))} \times 100 = 85.71\%$	1	
		P2. % of C by mass in compound R / C_2H_6 = $\frac{(12x2)}{(2(12) + 6(1))}$ x 100 = 80 %	1	
		P3. % of C by mass in compound Q / C_2H_4 is higher than compound R / C_2H_6	1	
		P4. compound Q / C ₂ H ₄ produces more soot / higher sootiness than compound R / C ₂ H ₆ OR P1. % of C by mass in compound Q / C ₃ H ₆ = (12x3) x 100 = 85.71% (3(12) + 6(1)	1	4
		P2. % of C by mass in compound R / C_3H_8 = $\frac{(12x3)}{(3(12) + 8(1))}$ x 100 = 81.81% P3. % of C by mass in compound Q / C_3H_6 is higher than		
		compound R / C ₃ H ₈ P4. compound Q / C ₃ H ₆ produces more soot / higher sootiness than compound R / C ₃ H ₈		

No.	Mark Scheme	Sub Mark	Total Mark
(d)	[Able to justify the use of artificial ethene for fruit ripening process correctly] P1. Agree/Disagree P2&P3. Justification Sample answer: P1. Yes // it can be used. P2. It induces fruit ripening. P3. The ripening process of the fruits becomes faster / takes shorter time. OR P1. No // it shouldn't be used. P2. It decrease the fruit shelf-life//Fruit easily become over-ripe. P3. Cause vomiting / diarrhoea / sore throat / shortness of breath *Note: accept any suitable answers	1 1+1	3
		Total	20

SECTION C

	No.		Mark	Scheme	Sub Mark	Total Mark
11	(a)	(i)	[Able to state the basicity explain correctly] Sample answer: P1. Monoprotic P2. 1 mol of ethanoic acid in 1 mol of H ⁺ ion. // 1 molecule of ethanoic produce 1 H ⁺ ion.	ionise in water to produce	1 1	2
	*	(ii)	[Able to state and explain observation between experiment P1. Observation of experiment P2. Inference of experiment P3. Explanation of experiment I Sample answer: Experiment I P1. Balloon does not inflate// No change P2. No carbon dioxide gas release//No reaction occur P3. Exist as molecule // no H+ present	riment I and II correctly] ent I and II t I and II	1 1 1	3
	(b)	(i)	[Able to identify solid salt gas Z and name substance Answer: P1. Salt X: Copper(II) nitrate P2. Solid Y: Copper(II) oxide P3. Gas Z: Nitrogen dioxide P4. Substance P: Nitric acide*a: formula for P1, P2 & P3 r: formula for P4	e P correctly] te de	1 1 1 1	4

(ii) [Able to write a balanced chemical equation and calculate the volume of gas Z correctly] P1. Correct formula of reactant and products P2. Balanced chemical equation P3. No. of mole of salt X P4. Mole ratio P5.Volume of gas Z with correct unit Answer: P1 & P2. 2Cu(NO₃)₂ → 2CuO + 4NO₂ + O₂ P3. No. of mole of X = 9.4/(64+2(14)+6(16)) = 0.05 mol P4. 2 mol Cu(NO₃)₂ produce 4 mol NO₂ 0.05 mol Cu(NO₃)₂ produce 0.1 mol NO₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4.P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H++ OH → H₂O P4. Pour 2 cm³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube. P6. No effervescence occur // No gas bubbles	No.	Mark Scheme	Sub Mark	Tota Mark
P2. Balanced chemical equation P3. No. of mole of salt X P4. Mole ratio P5. Volume of gas Z with correct unit Answer: P1 & P2. 2Cu(NO ₃) ₂ → 2CuO + 4NO ₂ + O ₂ P3. No. of mole of X = 9.4/(64+2(14)+6(16)) = 0.05 mol P4. 2 mol Cu(NO ₃) ₂ produce 4 mol NO ₂ 0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm ³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.	(i			
Answer: P1 & P2. 2Cu(NO ₃) ₂ → 2CuO + 4NO ₂ + O ₂ P3. No. of mole of X = 9.4/(64+2(14)+6(16)) = 0.05 mol P4. 2 mol Cu(NO ₃) ₂ produce 4 mol NO ₂ 0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm ³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P2. Balanced chemical equation P3. No. of mole of salt X P4. Mole ratio	1 1	5
P3. No. of mole of X = 9.4/(64+2(14)+6(16)) = 0.05 mol P4. 2 mol Cu(NO ₃) ₂ produce 4 mol NO ₂ 0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm ³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.	•	TO COLUMN TO THE	1	3
P4. 2 mol Cu(NO ₃) ₂ produce 4 mol NO ₂ 0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm ³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P1 & P2. $2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$		
0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂ Note: Apply ecf P4 from P1 & P2 P5. Volume of gas Z = 0.1 x 24 = 2.4 dm ³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P3. No. of mole of $X = 9.4/(64+2(14)+6(16)) = 0.05$ mol		
P5. Volume of gas Z = 0.1 x 24 = 2.4 dm³ (c) [Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P4. 2 mol Cu(NO ₃) ₂ produce 4 mol NO ₂ 0.05 mol Cu(NO ₃) ₂ produce 0.1 mol NO ₂		
[Able to suggest chemical substance used to treat the waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test P1. Calcium oxide // calcium hydroxide // calcium carbonate P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		Note: Apply ecf P4 from P1 & P2		
waste, name the reaction and describe confirmatory test correctly] P1. Suggested chemical substance P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P5. Volume of gas $Z = 0.1 \times 24 = 2.4 \text{ dm}^3$		
P2. Name of reaction P3. Ionic equation P4,P5&P6. Confirmatory test Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.	(c)	waste, name the reaction and describe confirmatory		
Sample answer: P1. Calcium oxide // calcium hydroxide // calcium carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		P2. Name of reaction P3. Ionic equation	1 1	6
carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		Notice that		0
Po. No effervescence occur // No gas bubbles		carbonate *a: formula P2. Neutralisation P3. H ⁺ + OH ⁻ → H ₂ O P4. Pour 2 cm ³ of the waste water into a test tube. P5. Add (a named metal carbonate / metal) into the test tube.		
		ro. No effervescence occur // No gas bubbles		

PERATURAN PEMARKAHAN TAMAT